

Accelerating a sustainable, just, and equitable transition to zero-carbon electricity generation by 2035.

Copper Printed Contacts for Silicon Solar Cells

T. Druffel, D. Williams, K. Elmer, E. Yenney, R. Dharmadasa, A. Rohatgi, A, Upadhyaya, V. Upadhyaya, P. Stradins, S. Mitra, S. Johnston, H. Guthrey, P. Hacke

Module Materials Solutions

Awarded FY23 Core Modelling Call Period of Performance: 4/23-3/24 Funding: \$500k	Contributing to DuraMAT Consortium Goals
	As the Industry pushes towards lower costs using more abundant materials it is imperative that the impact on durability, especially for >25 year operation, be addressed. The industry has been very interested in replacing silver (Ag) with lower cost and abundant conner (Cu) but has resisted
	primarily on the potential for accelerated degradation; including Cu diffusion into Si, oxidation and EVA reaction.
	This project aims to develop accelerated aging tests that explore the impact of diffusion, oxidation and encapsulant degradation mechanisms.

Project Overview

Demonstrate that COPPER PASTES are a VIABLE ALTERNATIVE to SILVER.

- Largest non-silicon cost is silver.
- Copper screen-printed air fired pastes.

Silver Volatility

Copper 1/100th the cost.

- Copper can oxidize and diffuse reducing the performance of a solar cell.
- Quantify the stability of the copper in a module.

Copper Paste Advantage

Cost projections and sustainability.

Printed Cell

Damp Heat

Mini-mini module (16 cm² PERC).

Accomplishments & Publications

- Potential for modules containing copper metallized
 PERC cells demonstrated on the miniature scale.
- Performance and characterization of the potential degradation pathways in-progress.

Presentations:

•T. Druffel, A. Rohatgi, P. Stradins, Copper Screen Printed Pastes Fired in Belt Furnace, DuraMAT Webinar, 12th February 2024.
•Druffel, T. Copper printed metallization - progress. in DuraMAT. 2023. Albuquerque, NM.

Soldering

Paste development for IR and manual soldering.

Performance

Firing improved, but non-uniformities remain.

