

#### Delamination – A Long Term Reliability Concern





The optical loss from glass/encapsulant and ARC/encapsulant delamination is significant [1].

[1] DOI:10.1002/pip.3690, https://www.nrel.gov/docs/fy23osti/82324.pdf











#### Delamination – A Long Term Reliability Concern



Delamination at the silicon interface

Delamination at the glass interface

Severe corrosion/ discoloration of circuitry

• Moisture diffusion and corrosion from delamination events lead to performance drop, not matching required manufacturer- and cell-specific performance.











#### Degradation Modeling of Interfacial Adhesion





#### Goals:

- Develop and experimentally validate a module encapsulant degradation model.
- Incorporate fundamental degradation and crosslinking pathways and their dependence on environmental stressors (UV, temperature, humidity).











### Connecting Molecular Degradation Kinetics to Fracture Properties with Multiscale Modeling

Deacetylation → loss of vinyl acetate (VA) moieties in EVA

N = bond densities

$$N(t) = N_o exp(-\mathbf{k}t)$$

 $k_{deacetylation}$  (bulk EVA)

Beta-scission → loss of polyethylene (PE) moieties in EVA

$$k_{scission}$$

$$| M_{scission} | M_$$

(bulk EVA) **k**<sub>scission</sub>

 $k_{HD}$  (EVA/cell, EVA/glass)

$$\mathbf{k}_{CL}$$

$$C_{CL}(t) = C_{CL,max} - \left(C_{CL,max} - C_{CL}(0)\right) e^{-\mathbf{k}_{CL}t}$$

Crosslinking → formation of bonds due to heat/UV



IV.

### Connecting Molecular Degradation Kinetics to Fracture Properties with Multiscale Modeling



Molecular crosslinking in the field - Formation of new bonds

Synergistic interactions between separate degradation mechanisms

Computing encapsulant mechanical properties from bond densities

Rigorous treatment of plasticity during fracture process





Elastic substrate (glass or silicon cell)





# Refined Model-Comparison with Experimental Data (Limited Variation in Exposure Conditions)













#### How to Extend The Model to Any Field Exposure Condition?

- Changing  $k_{degradation}$  and  $k_{CL}$  changes  $G_c(t)$  model predictions
- Goal: Determine how k changes with UV intensity, temperature, humidity















### Ongoing Work: Determining Degradation and Crosslinking Reaction Rates (Kinetics) Under Different Environmental Stressors



Ex:  $k_{scission}$ ,  $k_{crosslinking} = f(UV intensity, temperature, humidity)$ 

 Using accelerated aging (varying the stressors), characterize the degradation and crosslinking rates.











#### Ongoing Work

#### **Encapsulant Accelerated Aging Test Matrix**

|                      |                                 | REA        | READ POINT (CUMULATIVE DURATION) |      |       |       |       |                 |
|----------------------|---------------------------------|------------|----------------------------------|------|-------|-------|-------|-----------------|
|                      |                                 |            |                                  |      |       |       |       | # Encapsulants  |
| TEST TYPE            | TEST CONDITION                  | #1         | #2                               | #3   | #4    | #5    | #6    | (EVA, POE, EPE) |
| UV                   | 65°C, 22% RH (or chamber RH),   |            |                                  |      |       |       |       |                 |
| photodegradati       | oxidative, with UV              |            |                                  |      |       |       |       |                 |
| on:                  | 65°C, inert glovebox air,       | 500 hr     | 1000                             | 2000 | 3000  | 4000  | 5000  | 18              |
| Oxidative vs.        | with UV                         | 300 111    | hr                               | hr   | hr    | hr    | hr    | 10              |
| inert                | 85°C, 22% RH (or chamber RH),   |            |                                  |      |       |       |       |                 |
| environment          | oxidative, with UV              |            |                                  |      |       |       |       |                 |
| Hygromotric          | 90°C/60%RH, oxidative, no UV    | 2500       | 5000                             | 6250 | 7500  | 8750  | 10000 | Laminated       |
| Hygrometric          | 90 C/00/8KH, Oxidative, 110 OV  | 2500<br>hr | hr                               | hr   |       | hr    | hr    |                 |
| aging.               | 60°C/60%RH, oxidative, no UV    | 111        | 111                              | N/A  | hr    | N/A   | 111   | coupon (9)      |
|                      | 90°C, 22% RH, oxidative, no UV  |            |                                  |      |       |       |       |                 |
| Oxidative vs.        | 90°C, inert glovebox air, no UV | 2 wk       | 4 wk                             | 8 wk | 14 wk | 20 wk | 30 wk | 18              |
| inert<br>environment | 65°C, inert glovebox air, no UV |            |                                  |      |       |       |       |                 |











#### Ongoing Work

#### **Encapsulant Accelerated Aging Test Matrix**

|                      |                                 | REA        | READ POINT (CUMULATIVE DURATION) |      |       |       |       |                 |
|----------------------|---------------------------------|------------|----------------------------------|------|-------|-------|-------|-----------------|
|                      |                                 |            |                                  |      |       |       |       | # Encapsulants  |
| TEST TYPE            | TEST CONDITION                  | #1         | #2                               | #3   | #4    | #5    | #6    | (EVA, POE, EPE) |
| UV                   | 65°C, 22% RH (or chamber RH),   |            |                                  |      |       |       |       |                 |
| photodegradati       | oxidative, with UV              |            |                                  |      |       |       |       |                 |
| on:                  | 65°C, inert glovebox air,       | 500 hr     | 1000                             | 2000 | 3000  | 4000  | 5000  | 18              |
| Oxidative vs.        | with UV                         | 300 111    | hr                               | hr   | hr    | hr    | hr    | 10              |
| inert                | 85°C, 22% RH (or chamber RH),   |            |                                  |      |       |       |       |                 |
| environment          | oxidative, with UV              |            |                                  |      |       |       |       |                 |
| Hygromotric          | 90°C/60%RH, oxidative, no UV    | 2500       | 5000                             | 6250 | 7500  | 8750  | 10000 | Laminated       |
| Hygrometric          | 90 C/00/8KH, Oxidative, 110 OV  | 2500<br>hr | hr                               | hr   |       | hr    | hr    |                 |
| aging.               | 60°C/60%RH, oxidative, no UV    | 111        | 111                              | N/A  | hr    | N/A   | 111   | coupon (9)      |
|                      | 90°C, 22% RH, oxidative, no UV  |            |                                  |      |       |       |       |                 |
| Oxidative vs.        | 90°C, inert glovebox air, no UV | 2 wk       | 4 wk                             | 8 wk | 14 wk | 20 wk | 30 wk | 18              |
| inert<br>environment | 65°C, inert glovebox air, no UV |            |                                  |      |       |       |       |                 |











### Thermal Effects on Crosslinking in Encapsulants Revealed by High-Temperature Aging (90°C, no UV)

EVA, POE, EPE from commercial source

- Fully cured (145°C for 45 minutes "5x cured") before aging
- No residual crosslinking initiators (DSC verified)
- EPE = EVA/POE/EVA composite

Additional crosslinking of encapsulants may occur in the field under high temperatures and UV exposure, even after being fully cured [1], [2]

High-temperature aging experiments (90°C) allow us to isolate the thermal effects on the crosslinking kinetics of fully cured encapsulants.

[1] Oreski, G., Rauschenbach, A., Hirschl, C., Kraft, M., Eder, G. C., & Pinter, G. G. (2017). *J. of App. Polymer Sci.*, 134.2017(23), Article 44912. [2] Michael D. Kempe, David C. Miller,..., Energy Sci. Eng., 4 (1), 2016, 40-51.











## Method for Measuring Encapsulant Degree of Crosslinking: Soxhlet Extraction

- Sample: Encapsulant aged at various times
- Solvent: mixed xylenes (~220 mL), BHT antioxidant (~20 mg)
- Reflux for 10 hours in Soxhlet extractor ( >180 cycles )
- Sample held in a cellulose thimble in extraction chamber

Measure gel content: 
$$G_{\%} = \frac{m_f - m_t}{m_i} 100$$

 $m_t$  = initial mass of dried thimble

 $m_i$  = initial encapsulant mass before extraction experiment

 $m_f$  = (thimble + encapsulant) mass post-extraction

In other words: 
$$G_{\%} = \frac{insoluble \ mass}{total \ mass} = \frac{heavily \ crosslinked \ mass}{total \ mass}$$

#### $G_{\%}$ increases as the degree of crosslinking increases











### Thermal Effects on Crosslinking in Encapsulants Revealed by High-Temperature Aging (90°C, no UV)

Solid dots: 90°C, 22% RH, no UV Open dots: 90°C, inert air test tube sealed

*G*<sub>%</sub> measures the degree of crosslinking



Degree of crystallinity decreases with an increase in degree of crosslinking

Changes consistent with gel content













#### Kinetics of Thermal-Induced Crosslinking in Encapsulants



 $G_{\%}$  correlates with degree of crosslinking.

First-order kinetics model [1]:  $G(t) = G_{max} + (G_0 - G_{max})e^{-k_{CL}t}$ 

Determine  $k_{Cl}$  from line of best fit

| EVA                    | k <sub>CL</sub> |
|------------------------|-----------------|
| EVA, 90°C 22% RH       | 1.21E-3         |
| EVA, 90°C inert sealed | 4.60E-3         |

| POE                    | k <sub>CL</sub> |
|------------------------|-----------------|
| POE, 90°C 22% RH       | 7.15E-4         |
| POE, 90°C inert sealed | 2.08E-3         |

[1] Liu, Thornton, D'hooge, Dauskardt. Prog Photovolt Res Appl. 2023;1-13.doi:10.1002/pip.3771











#### Kinetics of Thermal-Induced Crosslinking in Encapsulants



 $k_{CL} \sim 7.4\text{E-}5 \text{ under FL, CO, AZ}$  field conditions [1]

*k<sub>CL</sub>* computed for EVA and POE at 90°C is about an order of magnitude higher

$$k_{CL} = Ae^{-\frac{E_{A,crosslinking}}{RT}}$$

| EVA                    | k <sub>CL</sub> |  |  |
|------------------------|-----------------|--|--|
| EVA, 90°C 22% RH       | 1.21E-3         |  |  |
| EVA, 90°C inert sealed | 4.60E-3         |  |  |

| POE                    | k <sub>CL</sub> |
|------------------------|-----------------|
| POE, 90°C 22% RH       | 7.15E-4         |
| POE, 90°C inert sealed | 2.08E-3         |

Repeat experiment with 65°C aging to get thermal  $E_{A,crosslinking}$ 

[1] Liu, Thornton, D'hooge, Dauskardt. Prog Photovolt Res Appl. 2023;1-13.doi:10.1002/pip.3771











### What Is the Role of Sequenced Accelerated Testing on Interfacial Degradation (Interfacial $G_c$ )?

Test matrix for sequences of accelerated aging of cell/encapsulant/glass laminates

|              |                          | DURATION (hours) |      |      |       |  |  |
|--------------|--------------------------|------------------|------|------|-------|--|--|
| TEST TYPE    | TEST CONDITION           | 2500             | 5000 | 7500 | 10000 |  |  |
| stoody state | UV (IEC 62788-7-2 A3)    |                  |      |      |       |  |  |
| steady state | hot-humid (60°C/60%RH)   |                  |      |      |       |  |  |
| aging        | hot-dry (90°C/~0%RH)     |                  |      |      |       |  |  |
|              | UV → hot-humid (h-h)     | UV               | h-h  |      |       |  |  |
|              | repeat[UV → hot-humid]   | UV               | h-h  | UV   | h-h   |  |  |
| sequential   | hot-humid → UV           | h-h              | UV   |      |       |  |  |
| aging        | repeat[hot-humid → UV]   | h-h              | UV   | h-h  | UV    |  |  |
|              | UV → hot-dry → hot-humid | UV               | h-d  | h-h  |       |  |  |











### Further Refinement of $G_c$ Model with Adhesion Testing and Characterization of Laminated Coupons













### Further Refinement of $G_c$ Model with Adhesion Testing and Characterization of Laminated Coupons













#### Acknowledgements

- Dr. David Miller
- Dr. Nick Bosco
- Professor Reinhold Dauskardt
- NREL scientists: Rachael Arnold, Jimmy Newkirk

Previous contributors to the program:

- Dr. Patrick Thornton
- Professor Dagmar D'hooge

Funding provided as part of the Durable Module Materials Consortium 2 (DuraMAT 2) funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Solar Energy Technologies Office, agreement number 38259.





















