

Benchmarking Bill-of-Materials of Recently Deployed PV Modules: Associating Specific BOMs with Field Performance Trends

DuraMAT SPARK project

DuraMAT Fall Workshop Albuquerque, NM September 2023

Joe Karas

joseph.karas@nrel.gov

Accelerating a sustainable, just, and equitable transition to zero-carbon electricity generation by 2035.

Fielded Module Forensics

Understanding Trends in Failure Modes of Photovoltaic Modules and Materials

PI: Teresa Barnes (NREL), Jenya Meydbray (PVEL), Robert Flottemesch (Luminace) & Jim Rand (Core Energy Works) Team: Joe Karas, Dirk Jordan, Teresa Barnes, Jenya Meydbray, Robert Flottemesch, Jim Rand, Max McPherson, Mason Reed, Mike Kempe

Contributing to DuraMAT Consortium Goals

Identify bill of materials (BOM) and/or process control measures for photovoltaic modules with representative failure modes as informed by accelerated and field tests to guide next steps in module and material design.

Project Overview

- Project Goal: examine correlations between module field performance and accelerated testing
- Identify modules that have gone through partners' accelerated testing programs AND are deployed in the field in partners' fleets.
- Identify BAD field performance/failures, GOOD field performance, and mixed field performance. BAD performers are the easiest to find.
- Identify if BAD performers are due to BOM changes, inadequate testing, or something else?
- Identify modules that have sharable accelerated test data.

Project Details Several different investigations:

- 1. Series resistance degradation in different climates with different BOMs
- 2. Light- and elevated temperature-induced degradation (LETID) in different climates with different BOMs
- Modules with "good" accelerated test performance AND "good" field performance
- Backsheet cracking and insulation resistance failure driven by BOM differences (not shown here for brevity)

Follow on from FY2022 project "BOM Squad"

Goals/results of BOM Squad:

- <u>Goal</u>: examine correlations between historical accelerated testing data with specific fielded module BOMs and their field performance trends
- <u>Results</u>: it was challenging to associate accelerated test data with field performance, because *tested and fielded module* BOMs were seemingly different
 - Underscores the importance of BOM verification/ factory witnessing/ test every BOM, e.g. following <u>IEC TS 62915</u> (IEC PV module re-test guidelines)
 - But, BOM variation drives different degradation in many cases (See also Deceglie *et al., IEEE JPV,* doi: <u>10.1109/JPHOTOV.2022.3209610</u>)
 - Establishing correlation requires enough field time to confidently measure Rd (5+ year old systems)

Benchmarking Bill-of-Materials of Recently Deployed PV Modules: Associating Specific BOMs with Field Performance Trends PI: Joe Karas, NREL

Key Results

- Database of module/technology features from publicly available sources and scorecards.
- Identify overlap of Model Names from Scorecards and fielded systems.
- Downselect systems with key trends and prepare data analysis pipeline for systems.

Core Objective & Teaming

Core Objective: Fielded Module Forensics **Team:** Joe Karas, NREL

PV RELIABILITY SCORECARD REP 2014 July 2014 2019 RELIA 2020 Relial

- 9 Module ۲ (2014-202
- ~60 manu •
- > 500 Mo ۲

	Scoreca	rd 🚽 Model Name	🛫 Manufacturer Name 🚽	PMA: - P	MA: 🚽 PM/	Al - Mo	odule Design	- Cell 1-	🔹 of (📼 Cell F	🔹 Wafe 😴 Thermal Cycl	Damp Hea	Mechanical S	- PID (PID-) -	LID+LETID (202	PAN Performance (2 - H	lumidity
RT		2023 ASB-M10-144-AAA (G	2B) Adani Solar	530-575	530	575 Bif	acial - glass/backs	hee p-type PI	144	182 ×		8	×	×	×	
		2023 ASB-M10-144-AAA (G	2G) Adani Solar	530-575	530	575 Bif	acial - glass/glass	p-type Pl	144	182				×		
		2023 ASB-M10-144-AAA (G	2WE Adani Solar	530-575	530	575 Mo	onofacial - glass/ba	icksl p-type Pl	144	182 x			х	x		
		2023 AExxxMD-108	AE Solar	380-425	380	425 Mo	onofacial - glass/ba	icks[p-type P[108	182 x		8		8		
MAKE DATA MATTER.		2023 AExxxMD-108E	AE Solar	380-425	380	425 Mo	onofacial - glass/ba	icksl p-type Pl	108	182 x		×		x		
		2023 AExxxMD-120	AE Solar	430-475	430	475 Mo	onofacial - glass/ba	icks[p-type P[120	182 x		×		x		
		2023 AExxxMD-120E	AE Solar	480-525	480	525 Mo	onofacial - glass/ba	icksl p-type Pl	120	182 x		х		x		
MAKE DATA MATTER.		2023 AExxxMD-132	AE Solar	480-525	480	525 Mo	onofacial - glass/ba	icks[p-type P[132	182 x		×		x		
		2023 AExxxMD-132E	AE Solar	480-525	480	525 Mo	onofacial - glass/ba	icksl p-type Pl	132	182 x		8		×		
		2023 AExxxMD-144	AE Solar	530-575	530	575 Mo	onofacial - glass/ba	icks p-type P	144	182 x		×		x		
		2023 AExxxMD-144E	AE Solar	530-575	530	575 Mo	onofacial - glass/ba	icksl p-type Pl	144	182 x		8		x		
MAKE DATA MATTER.		2023 AIKO-Axxx-MAH54Mb	Aiko Solar	430-475	430	475 Mo	onofacial - glass/ba	icks[in-type Al	108	182			х			
		2023 AIKO-Axxx-MAH54Mw	Aiko Solar	430-475	430	475 Mo	onofacial - glass/ba	ickslin-type Al	108	182		х	х			
	nher of group	2023 AIKO-Axxx-MAH72Mb	Aiko Solar	580-625	580	625 Mo	onofacial - glass/ba	icks n-type Al	144	182			×			
	iwa	2023 AIKO-Axxx-MAH72Mw	Aiko Solar	580-625	580	625 Mo	onofacial - glass/ba	ickslin-type Al	144	182		×	х			
Relia		2023 SKA508HDGDC	Akcome	380-425	380	425 Bif	acial - glass/glass	n-type H	80	210 x	8		8	x		
	600	2023 SKA509HDGDC	Akcome	430-475	430	475 Bifa	acial - glass/glass	n-type H.	90	210 x	×		х	×		
SCORECARD: PDF SUMMARY	(JPVEL	2023 SKA510HDGDC	Akcome	480-525	480	525 Bif	acial - glass/glass	n-type H	100	210 x	8		8	x		
		2023 SKA511HDGDC	Akcome	530-575	530	575 Bifa	acial - glass/glass	n-type H.	110	210 x	×		х	×		
		2023 SKA610HDGDC	Akcome	630-675	630	675 Bif	acial - glass/glass	n-type H	120	210 x	×	×	х	×		
		2023 SKA611HDGDC	Akcome	675W	675	Bifa	acial - glass/glass	n-type H-	132	210 x	х	8	×	x		
		2023 CHSM54N(BL)-HC-xxx	Astronergy	380-425	380	425 Mo	onofacial - glass/ba	icks[in-type T(108	182				×		
البين الأرابي في ال		2023 CHSM54N(DG)/F-BH-)	xxx Astronergy	380-425	380	425 Bif	acial - glass/glass	n-type T(108	182	х	8		x		
		2023 CHSM54N(DG)/F-HC-:	xxx Astronergy	380-425	380	425 Mo	onofacial - glass/gla	ass n-type T(108	182	×			×		
		2023 CHSM54N(DGT)/F-BH	-xxx Astronergy	380-425	380	425 Bif	acial - glass/glass	n-type T(108	182	х			х		
	1.3.1	2023 CHSM54N-HC-xxx	Astronergy	380-425	380	425 Mo	onofacial - glass/ba	icks n-type T(108	182				x		
	A. A.	2023 CHSM60M(DG)/F-BH-	xxx Astronergy	580-625	580	625 Bif	acial - glass/glass	p-type PI	120	210 x		х	х	x		
		2023 CHSM60M-HC-xxx	Astronergy	580-625	580	625 Mo	onofacial - glass/ba	icks p-type P	120	210				×		
C		2023 CHSM60N(DG)/F-BH-;	xxx Astronergy	430-475	430	475 Bif	acial - glass/glass	n-type T(120	182	×	х		×		
Scorecards		2023 CHSM60N(DG)/F-HC-;	KXX Astronergy	430-475	430	475 Mo	onofacial - glass/gla	ass n-type T(120	182	×			8		
		2023 CHSM60N-HC-xxx	Astronergy	430-475	430	475 Mo	onofacial - glass/ba	ickslin-type T(120	182				x		
		2023 CHSM66M(DG)/F-BH-;	xxx Astronergy	630-675	630	675 Bif	acial - glass/glass	p-type Pl	132	210 x		8	8	8		
731		2023 CHSM66M-HC-xxx	Astronergy	630-675	630	675 Mo	onofacial - glass/ba	icksl p-type Pl	132	210				×		
		2023 CHSM72N(DG)/F-BH-:	KXX Astronergy	530-575	530	575 Bif	acial - glass/glass	n-type T(144	182	×	×		8	×	
c .		2023 CHSM72N-HC-xxx	Astronergy	530-575	530	575 Mo	onofacial - glass/ba	ickslin-type T(144	182				8		
itacturers		2023 CHSM78N(DG)/F-BH-;	xxx Astronergy	580-625	580	625 Bif	acial - glass/glass	n-type T(156	182	×	×		×		
		2023 CHSM78N-HC-xxx	Astronergy	580-625	580	625 Mo	onofacial - glass/ba	ickslin-type T(156	182				×		
		2023 BVM6610M-xxxS-H-H	C-B Boviet Solar	330-375	330	375 Bib	acial - glass/glass	p-type Pl	120	166			×			
del Names		2023 BVM6612M-xxxS-H-H	C-BI Boviet Solar	430-475	430	475 Bif	acial - glass/glass	p-type PI	144	166			х		1	
activaties		2023 BVM7609M-xxx-H-HC	Boviet Solar	380-425	380	425 Mo	onofacial - glass/ba	icks p-type Pl	108	182		×	8			
		2023 BVM7609M-xxx-H-HC	-BF Boviet Solar	380-425	380	425 Bif	acial - glass/glass	p-type PI	108	182		×	×			
L L		2023 BVM7610M-xxx-H-HC	Boviet Solar	430-475	430	475 Mo	notacial - glass/ba	icks[p-type P]	120	182		8	х			
1		2023 BVM7610M-xxx-H-HC	-Bh Boviet Solar	430-475	430	475 Bif	acial - glass/backs	hee p-type PI	120	182		×	×			
I		2023 BVM7610M-xxx-H-HC	-Bh Boviet Solar	430-475	430	475 Bif	acial - glass/glass	p-type PI	120	182		8	×			
		2023 BVM7612M-xxx-H-HC	Boviet Solar	530-575	530	575 Mo	notacial - glass/ba	icksl p-type Pl	144	182		×	×			
I		2023 BVM7612M-xxx-H-HC	-Bh Boviet Solar	530-575	530	575 Bif	acial - glass/backs	hee p-type PI	144	182		8	×			
		2023 BVM7612M-xxx-H-HC	-BF- Boviet Solar	530-575	530	575 Bif	acial - glass/glass	p-type PI	144	182		8	х			
		ZUZ3 CS3N-xxxMS	Canadian Solar	380-425	380	425 Mo	onotacial - glass/ba	icks[p-typeP]	132	166 x	×	×	×	×		

- ✓ Historical Scorecard data entry complete
- > Currently: understand research value of historical public Scorecard data, identify trends & systems of interest

PQP Tests

)uraMAT

Factory Witness, Characterizations and Light-Induced Degradation Measurement Backsheet Mechanical Potential-PAN File & Field Thermal Durability Stress Induced Stress IAM Profile Cycling Heat Sensitivity Exposure Sequence Sequence Degradation Sequence LETID 162 hrs DH 1000 PAN File TC 200 DH 1000 Hail Static 85°C, 85%RH Field (75°C, Isc-Imp) Mechanical MSV (+ and/or -) Exposure 6 Months Load 192 hrs UV 65 kWh/m² Characterization Characterization IAM Profile Characterization Characterization Denotes test Characterization Characterization Dynamic TC 200 DH 1000 Characterization data appears in Mechanical Dynamic LETID 162 hrs Mechanical Load (75°C, Isc-Imp) Load 2023 Scorecard Field TC 50 + HF 10 Characterization Characterization Exposure results 6 Months Characterization Characterization Characterization Stabilization UV 65 kWh/m² TC 200 80°C, Isc, 48 hrs LETID 162 hrs TC 50 + HF 10 Characterization (75°C, Isc-Imp) TC 50 + HF 10 Characterization Characterization Characterization Characterization Characterization Characterization TC 50 + HF 10 UV 65 kWh/m² "Top Performer" status Characterization (since 2018, at least) means Test flow, procedures, and TC 50 + HF 10 <2% power degradation nomenclature have evolved (excl. PAN File) UV 6.5 kWh/m² over time, e.g. Mechanical **Stress Sequence** Characterization Source: PVEL 2023 PV Module Reliability Scorecard Executive Summary

User's guide to historical PVEL Reliability Scorecard Data

- Scorecard data has evolved over time
 - 2014 & 2016, only manufacturer names were listed
 - Since 2017, product names, and factory locations.
 - But factory locations are not always mappable to Model Names.... could be multiple.
 - Since 2022, limited BOM information (bifacial vs. monofacial, g/g vs. g/bs, power, # cells, cell size/format)
 - Since 2023, downloadable as .CSV (thank you!)
- According to PVEL, a module Model Name may be listed in a Scorecard if:
 - Factory witness in the prior 18 months with BOM verification.
 - > Implies that one witnessed Model Name may appear in two consecutive Scorecards
 - Submitted at least 2 factory-witnessed modules per test sequence. No picking and choosing tests.
- Sometimes, testing is not complete at Scorecard publication date.
 - > Important to look at multiple years for complete Scorecard data for a given Model Name!
- Tested Model Names vs. "representative variants"
 - Could understand better which tests allow for what changes for variants to qualify (i.e., frame color, 60 vs. 72 cells...). Are these IEC TS 62915 guidelines or other?
- Some of these questions might be answerable if you are a "Downstream Partner"

Some summary data

- Model names per year has gone up and up ٠
 - 2017: 36 2021: 120 •
 - 2018: 44 2022: 119 •
 - 2019: 43 • 2023: 247
 - 2020: 72

But most models don't achieve "Top Performer" in all (or even most) categories

- Median number of "Top Performer" categories ۲ per model name:
- 2017: 3 (out of 5)
- 2019: 3 (out of 5) ٠
- 2020: 2 (out of 5)
- 2021: 2 (out of 6)
- 2018: 3 (out of 5) 2022: 4 (out of 6)
 - 2023: 2 (out of 6)

SNRE

An example:

One Model Name, four consecutive Scorecards, but some opacity

			Top Performer Categories						
Scorecard year	Model Name	Manufacturer	Thermal Cycling	Damp Heat	Mechanical Stress Sequence	PID	LID+LETID (since 2021)		
	Q.PEAK DUO								
2019	L-G5.2	Qcells	х		х	Х	N/A		
	Q.PEAK DUO								
2020	L-G5.2	Qcells	х				N/A		
	Q.PEAK DUO								
2021	L-G5.2	Qcells	х	Х	х	Х	х		
	Q.PEAK DUO								
2022	L-G5.2	Qcells	Х		х	х	х		

Unclear from public Scorecards...

- How many times was this BOM factory-witnessed and tested? At least 2, or as many as 4
- Did it "fail" Mechanical Stress and PID in 2020?
- Did this module "fail" Damp Heat prior to 2021? Did it subsequently "fail" in 2022?

Many questions like this start to appear as one starts sifting through public Scorecards

Q.PEAK DUO L-G5.2

- 355-400W
- Monofacial glass/backsheet
- p-type PERC
- 144 cells
- Half-cell
- 156.75mm wafer width

Dura MAT

SINREL

Another example:

One Model Name, Four consecutive Scorecards, but several BOM changes

			Top Performer Categories						
Scorecard			Thermal	Damp	Mechanical Stress		LID+LETID		
year	Model Name	Manufacturer	Cycling	Heat	Sequence	PID	(since 2021)		
2020	CHSM60M-HC-xxx	Astronergy	Х	х		х	N/A		
2021	CHSM60M-HC-xxx	Astronergy	Х				х		
2022	CHSM60M-HC-xxx	Astronergy	Х		Х	х	х		
2023	CHSM60M-HC-xxx	Astronergy					Х		

- Same Model Name, but obvious BOM changes when you look at datasheets: •
 - $156.75 \rightarrow 158.75 \rightarrow 166$ mm wafer width, and 5BB \rightarrow 9BB interconnects
 - Larger module ~1.66 \rightarrow 1.84 m²
 - BOM data not included in 2020 and 2021 Public Scorecards, so we're in the dark
- Which BOM was factory-witnessed and tested for each test? •
- This model seems to have not been tested for every test, and instead was a "representative variant"

sive for the Australian Ma

Astronergy CHSM60M-HC-xxx \sim 335W \rightarrow \sim 350W \rightarrow \sim 380W Monofacial - glass/backsheet

ura**MAT**

©NRE|

Which tests are the easiest and hardest for achieving Top Performer Status?

 Since 2017*, it appears like modules are not getting demonstrably better at earning Top Performer status at:

TC, DH, MSS, PID

- LID+LETID is on a good trajectory, though (219 out of 247 in 2023)
- Some mitigating factors:
 - Tests have evolved over time:
 - e.g. mechanical stress sequence; DH duration
 - *For 2023, test duration + PVEL facility move. LID+LETID is relatively short compared to other tests

🗱 Dura MAT

∷NREL

Do any manufacturers stand out from the rest?

aboratories

Recent trends (2022 \rightarrow 2023)

Wafer Sizes

100 Scorecard year 2022 2023 80 Percent (%) 60 40 20 0 Prive PEPC Property of the prive pri h-MPe IBC REPT de Cell Technology

Cell Technology

Obvious consolidation/increase in wafer size:

- 2022: Roughly equal M2/G1/M4/M6/M10
- 2023: Predominantly M10 (182mm)

No obvious change in cells per module; implies half-cell format is still predominant Only a slight transition to n-type TOPCon/HJT, p-type PERC still predominant

Dura MAT

SNREL

Summary

- All historical PVEL Scorecard data has been entered
 - Most models don't achieve Top Performer status in all tests
 - Public Scorecard data leaves some unanswered questions regarding model testing/retesting, and BOM changes
 - The fraction of modules that achieve Top Performer status in most tests seems to be going down over time, LID/LETID is the exception
 - Tough to differentiate between manufacturers based on Scorecard results
 - Most manufacturers achieve Top Performer status ~40%-60% of the time on a per-module basis
 - Recent trends: substantial evolution in wafer size; transition to n-type is underway
- Next steps
 - DuraMAT datahub
 - ✓ Identified overlap of several fielded systems and Scorecard data, continue look for systems of interest

Thank you!

joseph.karas@nrel.gov

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided as part of the Durable Module Materials Consortium 2 (DuraMAT 2) funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Solar Energy Technologies Office, agreement number 38259. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

