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ABSTRACT 
Maintaining the reliability of photovoltaic (PV) modules in the face of rapidly changing technology is 
critical to maximizing solar energy’s contribution to global decarbonization. Our review describes 
expected changes in PV technology and their impacts on performance and reliability. We leverage PV 
market reports, interviews with PV researchers and other industry stakeholders, and peer-reviewed 
literature to narrow the multitude of possible changes into a manageable set of 11 impactful trends likely 
to be incorporated in near-term crystalline-silicon module designs. We group the trends into four 
categories (module architecture, interconnect technologies, bifacial modules, and cell technology) and 
explore the drivers behind the changes, their interactions, and associated reliability risks and benefits. Our 
analysis identifies specific areas that would benefit from accelerating the PV reliability learning cycle, to 
assess emerging module products and designs more accurately. We recommend that researchers continue 
tracking module technologies and their reliability implications so efforts can be focused on the most 
impactful trends. As the rapid technological turnover continues, it is also critical to incorporate 
fundamental knowledge into models that can predict module reliability. Predictive capabilities complete 
the PV reliability learning cycle—reducing the time required to assess new designs and mitigating the 
risks associated with large-scale deployment of new products.  
 
Highlights 

• We link new photovoltaic module technology trends with reliability implications 
• Trends include module architecture, interconnection, bifacial, and cell technology 
• Needs for new modules include data, standards and test development, and research  
• Models that can predict module reliability are also needed 
• Predictive capabilities reduce time and risk associated with new module products 
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Abbreviations 
Al-BSF  aluminum back surface field 
a-Si  amorphous silicon 
BB  busbar 
c-Si  crystalline silicon 
CTE  coefficient of thermal expansion 
CTM  cell-to-module 
ECA  electrically conductive adhesive 
EVA  ethylene-vinyl acetate 
IBC  interdigitated back contact 
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IEC  International Electrotechnical Commission 
ITRPV  International Technology Roadmap for Photovoltaic 
LETID  light- and elevated temperature-induced degradation 
PERC  passivated emitter and rear cell 
PID  potential-induced degradation 
PID-c  corrosion-type potential-induced degradation 
PID-p  polarization-type potential-induced degradation 
PID-s  shunting-type potential-induced degradation 
POE  polyolefin elastomer 
PV  photovoltaic 
SHJ  silicon heterojunction 
TCO  transparent conducting oxide 
TOPCon tunnel oxide passivating contact 
UV  ultraviolet 
VOC  open-circuit voltage  
Wp  peak watts 
 
 
1. Introduction 
Solar photovoltaic (PV) technology is central to global decarbonization efforts, requiring deployments of 
at least 630 GW/year by 2030 [1]. Reliable PV modules and systems are key to meeting these ambitious 
deployment targets [2]. Reliable modules last longer, produce more energy, are more cost-competitive, 
and have less environmental impact [2,3]. They can also help maintain energy resilience during 
catastrophic events. Moreover, reliability builds confidence in PV technology among potential end users 
and financiers, enabling faster and more widespread deployment. PV has been reliable to date, with 
product warranties spanning decades and less than 1% of modules installed in the United States failing 
within their first 5 years [4]. Degradation rates have remained mostly constant between less expensive 
modern modules and previous generations of technologies. However, multiple factors will affect future 
module reliability and efforts to extend module lifetimes past 30 years [5]. 
 
First, an exponential deployment growth curve along with rapidly evolving technology means a large 
proportion of technologies in PV systems at any given time will be new. Such technologies may not have 
a field history, they may be deployed in environments where they have not been deployed before, or both. 
Most will lack the three years of data required to calculate accurate degradation rates. The rapid pace of 
introducing new PV technologies into the field creates a potentially greater risk of encountering 
premature failures and long-term reliability issues [6]. 
 
Second, manufacturers are under pressure to reduce module prices while increasing efficiency, resulting 
in PV technology changes [4]. Technology choices can also be influenced by changes in the global PV 
supply chain [7]. These technology changes often lead to higher performance, lower cost, or both, but 
some may increase reliability risks. One well-known example is the failure of backsheets made of a type 
of AAA polyamide, which entered the market in 2010. The AAA backsheets became popular because of 
their low cost and because the supply of conventional backsheets was constrained. These AAA 
backsheets passed standard damp-heat and ultraviolet (UV) light tests, but many began cracking after 5–
10 years owing to mechanical stresses from production and environmental exposure that had not been part 
of standard testing [4]. In addition to the impacts of individual changes, the complex interactions among 
multiple module materials exacerbate the reliability impacts of technological change [8]. 
 
Finally, there is pressure to increase module lifetimes. Typical module warranties were 10 years in 1990 
and 30 years in 2020 [6], with one product achieving a 40-year warranty in 2022 [9]. The U.S. 
Department of Energy is targeting a 50-year useful module life [10]. These expectations call for module 
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design choices, manufacturing processes, and testing that can enable longer lifetimes, while longer 
lifetimes create additional uncertainty around very long-term degradation and failure rates. Current 
standards and new accelerated tests have effectively reduced premature failures [11], but the PV 
community knows less about degradation after 10 or 20 years, because systems using current technology 
have not yet been deployed in the field that long. 
 
To ensure that PV can continue driving global decarbonization under these circumstances, the PV 
community must get ahead of the curve on module reliability. In their review of module degradation and 
failure phenomena, Aghaei et al. [8] call for research on new materials and module designs as they are 
introduced, considering reliability along with performance, cost, and sustainability. They also stress the 
importance of developing tests that can predict long-term reliability in the context of multiple materials 
and multiple stresses that vary over time [12]. Reliability researchers have started to make progress on 
this effort, but it is difficult to keep up with product development and deployment cycles [6,13].  
 
We contribute toward this effort by identifying and linking specific new module technology trends with 
potential reliability impacts. The PV module industry uses different trade names and descriptions for 
many of these technology changes, which we define, describe, and categorize for clarity. For each of 11 
trends, we analyze technology drivers (e.g., improved performance, cost, or sustainability), deployment 
projections, reliability implications, options for mitigating reliability risks, and the need for additional 
research and testing. We also explore reliability-related interactions among multiple trends. The results 
are meant to provide an early step toward identifying future reliability issues that have yet to materialize 
owing to the lack of historical field data for novel technologies. We conclude by suggesting areas related 
to the reliability of new module trends that would benefit from additional research as well as development 
of standards and testing.  
 
Note that we address only crystalline-silicon PV technology and exclude other module technologies 
including those based on thin films and tandem cells. Crystalline-silicon technology accounts for more 
than 80% of PV installed in the United States, accounts for more than 90% worldwide, and is projected to 
remain dominant over the next decade [14,15]. Thin film modules are primarily made by a single 
manufacturer and do not have as much variation in technology changes or descriptions of those changes. 
They will be covered in future work.  
 
2. Assessing Module Technology Trends and Reliability Implications 
We synthesize a range of sources to identify likely and impactful near-term module technology trends and 
to assess the reliability implications of those trends. Combining information from PV market reports, 
interviews with PV researchers and other industry stakeholders, and peer-reviewed literature helps us link 
academic and business concerns and better capture rapidly evolving knowledge and viewpoints. Key 
market sources include the International Technology Roadmap for Photovoltaic (ITRPV) [16–22], PV 
Tech [15], and InfoLink [23,24]. Our Acknowledgements section specifies individuals and groups who 
contributed their expertise.  
 
Figure 1 highlights the major trends in crystalline-silicon module evolution that we identified, starting in 
2014 at the left and proceeding beyond 2022 at the right. First, modules are becoming larger. Second, 
interconnect technologies are changing from cells with several wide busbars connected by wide ribbons to 
cells with more numerous, thinner busbars and ribbons. Further interconnect changes include a transition 
to cells connected by wires with or without busbars and approaches with little or no gap between cells 
such as shingling. Third, modules are switching from monofacial designs, which only convert sunlight at 
the front of the module, to bifacial designs, which also convert light hitting the back of the module. This 
change is driving evolution in glass, backsheet, and encapsulant choices. Finally, cell technologies are 
changing, from aluminum back surface field (Al-BSF) cells in the recent past, to the p-type passivated 
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emitter and rear cell (PERC) that is dominant today, to the emerging n-type tunnel oxide passivating 
contact (TOPCon) and silicon heterojunction (SHJ) technologies. 
 
The icons at the bottom of Figure 1 estimate the impact of these trends, showing metrics for typical past, 
recent, and emerging module technologies that would be used in utility-scale PV systems, based on 
ITRPV data. In this example, module size increases from 1.7 m2 in mainstream products sold around 
2014, to 2.0 m2 in recent mainstream products, to 2.5 m2 and larger in emerging products. Across these 
same three evolutionary steps, the cell-to-module (CTM) power ratio increases from 99% to 101% and 
greater. The CTM ratio is calculated by dividing the module power by the total power of the individual 
cells within the module [25,26]; a value above 100%—enabled by improved module architectures and 
interconnection technologies—means an integrated module produces more power than the sum of the 
individual cells from which it is made. Bifaciality factor is the ratio of a cell’s rear efficiency to front 
efficiency; it improves from zero in the past to almost one in emerging modules. Finally, cell efficiency 
increases from 18% to 25% and greater. All these trends affect module power. The first icon in each 
series of icons shows the estimated trend in increased power, from 280 peak watts (Wp) to 500 Wp and 
greater. These power estimates are calculated based on the front side of the modules only. Calculating 
power contributions from the rear face of bifacial modules is more complex and can depend on PV 
system design and site characteristics. Bifacial module power ratings are determined following 
International Electrotechnical Commission (IEC) standard 60904-1-2, where the measurement and rating 
are collected on the front but incorporate a previously determined contribution from the rear of the 
module. For utility-scale applications, a bifacial power gain of around 6.6%–14.5% could be expected 
[27].  
 
Ultimately, we chose to analyze the reliability implications of 11 key trends within four categories. The 
categories and trends are shown in Figure 2; the figure’s interlocking-gear motif suggests the presence of 
reliability-related interactions among multiple trends. Throughout the article, we illustrate trend 
trajectories with data from the ITRPV—typically in terms of market shares over time—which enables us 
to consistently present technology projections through 2032. ITRPV data are collected by surveying PV-
related organizations, primarily from Europe [28]. As with all projections, the passage of time exposes 
deviations between ITRPV projections and real-world technology developments, with deviations typically 
increasing as projection timespans increase. The accuracy of past projections is analyzed in the ITRPV 
annual reports and in publications including Baliozian et al. [28]. We use additional data sources—
including PV Tech, InfoLink, academic literature, and expert opinions—to add context to the ITRPV-
based projection figures. 
 
We recognize that our limited set of trends does not fully represent the large number of potential 
variations in commercial module technologies in the context of a rapidly evolving PV industry and entry 
of new manufacturers. The proprietary nature of specific module designs and commercial research 
hinders a shared understanding of product-specific variations, which could have important impacts on 
reliability even if they are seemingly minor. That said, we believe tracking consensus projections of major 
technology changes, analyzing their reliability implications, and identifying research, testing, and 
standards-development needs are valuable ways of staying ahead of the curve on module reliability. In the 
following sections, we analyze the potential reliability implications of each trend individually and as part 
of integrated systems. 
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Figure 1. Overview of crystalline-silicon PV module technology trends, showing the evolution from mainstream, utility-scale 
module products sold around 2014, to recent mainstream products, to emerging products. The icons at the bottom quantify the 
approximate impact of these trends across several metrics, based on ITRPV data. The label colors and icons suggest the 
connections between items in this figure and our technology categories illustrated in Figure 2. 

 
Figure 2. The 11 technology trends analyzed in this article grouped into 4 categories. The interlocking-gear motif indicates our 
analysis of reliability-related interactions among multiple trends. 

3. Module architecture 
This section discusses technology trends related to module architecture, including trends toward larger 
modules, larger cells, cell cutting, and thinner cells. All these interrelated areas have implications for 
mechanical reliability, such as cell cracking, interconnect breakage or wear out, and associated failure and 
safety concerns. Cell cracking is an umbrella term for a multi-step degradation process that can lead to 
power loss. We use it as an example of interacting degradation mechanisms to highlight the importance of 
holistically assessing the reliability implications of interrelated design changes. Cell cracks can be 
initiated by stresses arising during cell manufacturing as well as during module transportation, 
installation, and operation. The reliability consequences of cell cracking range from no impact to the 
formation of hotspots and dead areas leading to module power loss [8]. In one study, 84% of PV modules 
had at least one type of crack, but only 60% of the modules had cracks that caused significant power loss 
[29].  
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The wide range of reliability consequences stems from the multi-step nature of the degradation process. In 
the first step, cracks are initiated. In a second step, cracks can propagate as the module is subjected to 
additional stresses over time [8,30]. In a third step, cell fragments created by cracking can move in 
response to thermal or mechanical loading, which wears the fragment-bridging metallization and can 
result in loss of electrical contact and thus power loss [31]. However, the degradation rates for each step 
depend on a multitude of factors such as module architecture, loading, and the environment. Some cell 
cracks might never propagate, whereas others might cause power loss immediately. Thus, technology 
changes can impact all or none of the degradation steps, making the appropriate reliability assessment of 
multi-step degradation processes an ongoing challenge.  
 
For all the module architecture trends, cracking issues can be mitigated through improved manufacturing 
processes as well as regular sampling and fracture mechanics evaluation of cells from the production line 
[32]. Cracking-related reliability issues also interact with other trends covered in this article. New 
interconnect technologies, for example, create redundancy by increasing the number of electrical 
connections within a cell, which allow cell fragments to remain electrically connected and produce power 
in the event of cell fracture [33], as discussed in Section 4. Further, glass-glass module architectures—as 
used for bifacial modules—are heavier than standard glass-backsheet constructions, and manufacturers 
are trying to reduce weight by using thinner glass sheets, which changes the mechanical stresses 
throughout the package (see Section 5). 
 
Cell cracking and mechanical damage are examples of critical areas for further research in determining 
the relationship between material or design changes and the incidence and timing of long-term module 
degradation and failure. In addition, the newness of all these trends means more field data must be 
collected to aid in understanding and predicting potential reliability risks arising during operation. The 
following subsections provide details specific to each module architecture trend, reliability implications, 
and interactions with other trends. 
 

3.1. Larger modules 
Increasing the size of PV modules increases the active area of PV systems, and thus fewer modules are 
needed to construct a system with a given power output, which tends to reduce installed system costs 
[34]. In some situations, however, very large modules may require more labor to install than smaller 
modules [35,36]; this might increase installation costs if the additional labor cost is not offset by installing 
fewer modules. Installers must balance these competing considerations. 
 
Nevertheless, the ITRPV projects significant size increases over the next decade. Figure 3 shows modules 
smaller than 2.5 m2 constituting about half of the utility-scale market share in 2021 and then declining to 
15% in 2032, at which time 69% are 2.5–3.0 m2 and 16% are larger than 3.0 m2. Utility-scale module 
sizes may be stabilizing between 2.6 and 3.1 m2 after the China Photovoltaic Industry Association 
achieved an agreement on uniform sizes for modules with 210-mm half-cut cells [37]. Projected module 
weight increases as well. About half of utility-scale modules weigh less than 25 kg in 2021, declining to 
5% in 2032, at which time the remaining market share is split approximately evenly across modules 
weighing 25–30 kg and modules weighing 30–40 kg. Projected changes in residential module sizes are 
less dramatic, with the share of modules smaller than 1.8 m2 declining from 49% in 2021 to 38% in 2032. 
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Figure 3. Historical (2021) and projected (2022–2032) ITRPV data on utility-scale module size [22] 

For the same module loading condition, cells within larger modules are more likely to fracture [38]. Thus, 
larger modules are potentially susceptible to more frequent cell breakage due to weather, shipping, 
handling, or installation. In addition, if larger modules produce higher electrical currents, electrical 
balance-of-system components (e.g., wire size, fuses, bypass diodes) must be modified appropriately. 
 
Improving installation methods and mounting structure designs could mitigate reliability issues related to 
larger module sizes. One key may simply be proper workmanship, such as checking connections between 
frames and racks for wind loading, using the right fasteners and clips and installing them correctly, 
checking torque, and so forth [39,40]. For utility-scale systems, issues related to transitioning from 
modules mounted at their edges (in fixed mounting structures) to their centers (in tracking structures) are 
exacerbated by using larger modules [35,41]. Appropriate shipping techniques must be established for 
large modules, similar to how stacking moderately sized modules vertically instead of horizontally has 
mitigated the formation of microcracks during transportation [42]. However, reliability considerations 
established for smaller modules might not translate directly to larger modules. Hence, reliability tests and 
testing equipment must be modified to accommodate large modules, such as dynamic mechanical loading 
tests to assess wind loading and hail damage [31]. In addition, computational modeling can be a powerful 
tool for assessing scaling relationships [13]. Models validated for moderately sized models can be used in 
numerical studies to assess the implications of size increases on design parameters such as module 
deflection, thermo-mechanical stresses, or material fatigue [43–45]. 
 

3.2. Larger cells 
Manufacturing advances have enabled the production of larger wafers and cells, which may help reduce 
PV installed system costs by enabling higher module power [46]; see Section 3.1. Larger wafers also 
provide efficiency benefits by enabling cell cutting [34,47]; see Section 3.3. 
 
ITRPV historical estimates and projections show rapid growth of monocrystalline wafers larger than 166 
mm × 166 mm (Figure 4). Wafer sizes of 182 mm × 182 mm and larger capture about 85% of the market 
share by 2026 and 100% by 2032. By comparison, InfoLink provides a more aggressive projection (not 
shown in the figure), reaching a 100% share of 182- and 210-mm wafers by 2025 [23]. 
 
Using larger wafers may increase the risk of damage during handling, manufacturing, and packaging of 
large-format modules. Larger wafers are more susceptible to cracking than smaller wafers [38]. However, 
the most important reliability considerations relate to cell-cutting processes and the resulting cut-cell 
dimensions, which are discussed below. 
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Figure 4. Historical (2016–2021) and projected (2022–2032) ITRPV data on Czochralski monocrystalline wafer size in mass 
production [17–22] 

3.3. Cell cutting 
Using cut cells reduces resistive losses in modules by lowering electric currents [48,49], and it provides 
potentially higher shade tolerance [49,50]. Full cells have largely disappeared for wafer sizes smaller than 
182 mm × 182 mm, and they have completely disappeared for larger wafer sizes (Figure 5). Half cells are 
now the dominant configuration and are expected to remain so for the next decade. 
 
From a reliability perspective, the smaller cells resulting from cutting are less susceptible to cracking than 
larger cells [38]. However, the cutting process introduces the potential for cell cracking due to defects 
along the cut edges [51–53]. 
 
The risk of cell damage can be reduced by optimizing the cutting process. Bosco et al. [53] demonstrated 
that an optimized cutting process can essentially eliminate cracked cells due to static and dynamic 
mechanical loading, compared with non-optimized processes that result in significant cell cracking. 
Researchers have also demonstrated that cutting cells via thermal laser separation produces less damage 
than cutting them via laser scribing and cleavage [51,52].  
 
Once well-manufactured cut cells are laminated inside modules, they present similar fracture risk 
compared with full cells [51]. In addition, recent research suggests that rotating cut cells 90 degrees from 
their orientation in typical modules can reduce the probability of fracture further [54].  
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Figure 5. Historical (2016–2021) and projected (2022–2032) ITRPV data on cell aspect ratios for wafer sizes of at least 182 mm × 
182 mm [17–22] 

3.4. Thinner cells 
Making cells thinner reduces PV costs by reducing the amount of polysilicon used for the same amount of 
power capacity. During the 2009–2019 period, wafer thickness did not decrease as fast as the ITRPV 
predicted, possibly because of declining polysilicon prices and the greater resistance to breakage during 
packaging offered by wafers at least 180 µm thick [16–18,22]. Industry instead introduced diamond wire 
sawing to reduce polysilicon consumption in wafer manufacturing via lower kerf loss. Starting in 2020, 
however, wafer thicknesses have dropped more significantly, likely due in part to industry’s desire to 
reduce polysilicon use further during a time of rising polysilicon prices [22]. ITRPV [22] states that 
reducing the as-cut wafer thickness is now becoming the “method of choice” for further polysilicon-
related cost reductions, projecting thickness declines of 10%–20% between 2022 and 2032 (Figure 6). 
Current predictions associate the thinnest wafer forecasts with n-type cell architectures, which best exploit 
the efficiency gains possible from thin wafers (see Section 6). 
 
Thinner silicon cells are more flexible and could allow for new curved module designs. However, there 
are concerns that thinner cells might be more susceptible to cracking than thicker cells. With decreasing 
wafer size, surface damage introduced by the sawing process can have a higher impact on fracture 
strength when compared to the sawing of thick wafers [55]. Similarly, wafer thickness reduction leads to 
higher sensitivity of the solar cell to mechanical loads, and optimization of the manufacturing and 
handling processes becomes necessary [56].  
 
Because thinner cells are more difficult to handle during manufacturing, it is often assumed that their 
fracture risk is greater in general. However, thin cells might not be inherently more susceptible to 
cracking after they have been laminated inside a module. A holistic approach is required to address cell 
fracture risk, accounting for updated manufacturing processes, improved quality control, and overall PV 
module designs. In particular, multiple concurrent changes must be considered when assessing the 
fracture risk of thinner cells, such as changes to the interconnect technology, the stress localizations 
around those interconnects, the mechanical stress state and effective area of cells under tension, module 
packaging technology, edge-damage caused by the cutting process, cell thickness control, cell handling, 
as well as residual stresses caused by firing of the metallization and lamination process [33,57]. Refined 
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testing methods, improved models, and more research are needed to holistically address cell fracture risk 
and its implications for module design and power output. 
 

 
Figure 6. Historical (2016–2021) and projected (2022–2032) ITRPV data on global as-cut wafer thickness [17–22] 

4. Interconnect technologies 
We identified three main trends in interconnect technology: increased redundancy, geometry and process 
changes, and material changes. These individual trends are accompanied by an overarching trend of 
shrinking or eliminating the gap between cells to create high-energy-yield modules. 
 

4.1. Increased redundancy 
Traditionally, the front-side metallization of a PV cell consists of grid fingers and busbars. The grid 
fingers are printed on the cell to collect the current generated by a fraction of the PV cell. Busbars are 
printed perpendicular to the grid fingers to collect the current from the fingers. Tabbing ribbons are then 
soldered onto the busbars, establishing the interconnection of cells within modules by connecting the 
front side of one cell to the back of the next. At the end of a cell string, a bus ribbon is used to connect the 
multiple tabbing ribbons together and wire them into the junction box. This traditional interconnect 
technology is shown at left in Figure 7, where three tabbing ribbons are used to collect the current from 
the PV cell. The tabbing ribbons have rectangular cross-sections and are typically made from copper and 
coated with a layer of solder to facilitate soldering. A cell using such an interconnect technology is 
typically referred to as a three-busbar (3BB) cell. 
 
Moving to the right in Figure 7, interconnect technologies change from the traditional approach toward 
higher-energy-yield technologies. The second cell from the left uses five busbars (5BB), which decreases 
the distance between busbars and reduces resistance losses. Because the collected current is split into 
more busbars, the cross-section of the tabbing ribbons and busbars becomes smaller, and shading losses 
are reduced. In the third cell, even more busbars (12BB) are used, and the tabbing ribbon is replaced by a 
tabbing wire with a round cross-section. In addition, the rectangular footprint of the busbar is changed to 
a dash-line pattern, which reduces the amount of metallization paste needed by using dedicated solder 
pads connected with a thin metallization strip. The fourth cell illustrates a “busbarless” approach. Here, 
the screen-printed busbars are omitted, and the tabbing wires are directly connected to the grid fingers 
(see Section 4.2 for further details). Finally, shingled cells eliminate the gap between cells altogether, 
with cells overlapping each other by 1–2 mm and typically connected by electrically conductive adhesive 
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(ECA). Shingled cell approaches can either use or omit busbars [58]; hence we refer to shingling as zero-
gap technology. We only use the term “busbarless” if there is no screen-printed metallization 
perpendicular to the grid fingers. 
 
These trends are driven by several factors. As cells are getting larger, wider interconnection ribbons are 
required to conduct larger currents. However, the difference in coefficient of thermal expansion of the 
ribbon and silicon wafer lead to a build-up of thermomechanical stresses that limits the possible cross-
section size of the ribbon [59]. By including more busbars and interconnections, the individual ribbon size 
can be kept small, and the buildup of mechanical stresses can be reduced (see Section 4.2). More busbars 
and interconnections also enable reductions in cell finger width, which reduces costs by reducing silver 
metallization and increases efficiency by increasing the active cell area [60]. Finally, additional 
connections increase the likelihood of keeping fractured cell fragments electrically connected in the event 
of cell fracture, which increases reliability [61]. 
 

 
Figure 7. Evolution of interconnection technology from traditional ribbon bonding on polycrystalline cells (blue) to zero-gap 
shingling with monocrystalline cells (black). Grid fingers have been omitted for clarity, see Figure 10 for details. 

ITRPV projections show 9- to 10-busbar cells largely disappearing over the next decade, while the share 
of 11- to 12-busbar cells stays relatively constant and the shares with more than 12 busbars and no 
busbars increase. Note that these projections apply to M10 (182 mm × 182 mm) and larger cells; smaller 
cells may use fewer busbars. 
 
On the risk side, the increase in numbers of busbars has led to geometry, process, and material changes. 
Rectangular tabbing ribbons are being replaced by round tabbing wires in multiwire configurations, which 
can use conventional busbars, or busbarless approaches. The latter may introduce new processes and 
materials that can require the development of new tests and standards to assess long-term reliability [62]. 
Further, tabbing ribbons or wires may be entirely replaced by new materials such as ECA that enable 
zero-gap configurations through shingling. These changes could adversely affect cell stresses, if not 
properly designed, and increase cell fracture risk [63]. Sections 4.2 and 4.3 discuss the geometry, process, 
and material changes in detail. 
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Figure 8. Historical (2021) and projected (2022–2032) ITRPV data on market shares by number of busbars, for double side 
contacted cells in new and upgraded lines, and for wafers of M10 size (182 mm × 182 mm) and larger [22] 

4.2. Geometry and process changes 
Geometry changes in interconnect technologies can be observed in Figure 7 by the narrowing of the flat 
ribbons from left to right, which eventually turn into wires and disappear in the case of shingled cells. 
Multiwire approaches [64–67] improve efficiency by increasing the active cell area and leveraging light 
reflections off the wire. In Figure 9, the impact on incident light is illustrated by changing from a flat 
ribbon (left) to a round wire interconnect (right). The round wire shades less of the cell and reflects more 
light down onto the cell. These benefits offset the efficiency loss caused by the additional shaded area due 
to more busbars. Ultimately, the shaded cell area is eliminated through zero-gap approaches such as 
shingling. 
 

 
Figure 9. Geometry changes from flat ribbons (left) to round wires (right). The arrows illustrate the impact of the geometry on 

the incident light reaching the cell. 

Figure 10 shows process changes from a traditional tabbing process (left) towards a structured foil 
approach (right) [64]. Traditionally a single print was used to create the front side metallization consisting 
of grid fingers and busbars as indicated in the left-hand sketch in Figure 10. Here, the electrical 
connection between the busbar and tabbing ribbon is established through soldering, which creates a 
metallurgical connection. A modification of this method is the so-called double-print process [68]. Here, a 
two-step screen print process is used to increase the height of grid fingers and busbars while decreasing 
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their width, keeping the cross-sectional area constant. This process decreases shading losses by reducing 
the grid finger width [69] and covered surface area of the front side metallization. In the dual-print 
process, again a two-step process is used [70]. However, here the grid fingers are printed in the first step 
followed by a second step to add the busbars. Instead of using a simple rectangular shape for the busbars 
as shown in the previous two processes, a dash-line pattern with dedicated solder pads is shown in the 
illustration, which depicts a more modern approach to reduce the material input required for the 
metallization [71]. Both tabbing ribbons or tabbing wires can be used with the dual-print process, and 
soldering is used to establish the electrical connection between the busbar and wire or ribbon. In contrast, 
the structured foil approach eliminates the soldering process by establishing an electrical connection 
directly between the tabbing wire and grid fingers. Dedicated busbars and soldering are omitted in this 
approach. Instead, the wires are embedded in a polymer foil and placed between the cells during the 
lamination process [64]. The electrical connections rely on establishing mechanical contact between the 
grid fingers and the low-temperature solder-coated tabbing wires during the lamination process (see 
Section 4.3 for details and consequences of this technology change). 
 

 

Figure 10. Process changes: (a) single print—traditional tabbing process with few busbars and rectangular-shaped ribbons, (b) 
double print—a modification of the traditional tabbing process to increase the metallization height, while decreasing the 
covered cell area, (c) dual print—grid fingers and busbars are printed in separate steps, and in recent designs more 
interconnects are used, (d) busbarless—busbars are omitted, and only grid fingers are printed onto the cell.  

The changes in interconnect geometry and manufacturing processes are being driven by the efficiency 
benefits due to increasing the active cell area, reflecting more light onto the cell, and reducing or 
eliminating the gap between cells. In addition, the trend toward multiwire and shingling is driven by the 
need for low-temperature interconnect approaches. Structured foil and low-temperature solders lower the 
temperature requirements during the module packaging process and enable the use of new cell 
technologies, such as SHJ, that require lower processing temperatures after fabrication (see Section 6). 
Similarly, ECA can be cured at lamination temperature or below and is therefore suitable for temperature-
sensitive technologies. ITRPV projections show round wires displacing flat ribbons over the next decade, 
with increased use of structured foil and shingled technologies as well (Figure 11).  
 
Some of these changes can be incorporated easily into existing manufacturing processes (e.g., more 
busbars), but those requiring the introduction of new materials and processes require significant redesign 
of the entire PV module manufacturing and packaging process. Structured foil approaches, for example, 
introduce new manufacturing steps and require changes to adjacent packaging materials such as thicker 
encapsulants to accompany the round wires, which are thicker than flat ribbons. They further introduce 
new materials such as low-temperature solder alloys to establish a connection between the wire and the 
cell metallization, which introduces potential reliability risks. Similarly, shingled cell approaches 
significantly change the packaging process and the structural integrity of the whole module while 
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introducing new materials such as ECA [72]. Current qualification standards such as IEC 61215 have not 
yet been updated to account for all the emerging changes introduced in new module designs. Hence, 
additional research is necessary to assess whether the current standards are still sufficient to test modern 
PV module designs and materials, which are covered in the next section. 
 

 
Figure 11. Historical (2016–2021) and projected (2022–2032) ITRPV data on shares of interconnect technologies [17–22]; 
structured foil diagram modified from [73] 

4.3. Interconnect material changes 
Figure 12 illustrates material changes, comparing traditional metallurgical connections versus emerging 
connections relying on mechanical contact to establish the electrical connectivity of the interconnect. As 
shown in the first two diagrams from the left, traditional metallurgical connections use conventional tin-
lead (Sn-Pb) solders to bond ribbons and wires to the busbars across a wide contact area. In contrast, the 
last two diagrams show emerging interconnect technologies based on establishing a mechanical contact as 
the primary contacting mode instead of a metallurgical connection and incorporate new materials such as 
low-temperature solders (In-Sn, Sn-Bi) or ECA. The first diagram in the mechanical contact category 
shows the structured foil technology described above. This technology eliminates busbars and a dedicated 
soldering process. Instead, electrical contact between the tabbing wire and grid finger is established 
during the lamination process. The tabbing wire is coated in a low-temperature solder that is intended to 
establish a metallurgical connection with the grid finger during lamination. However, thermomechanical 
fatigue resistance of low-temperature solders is generally poor when compared to conventional solders, 
and—coupled with the small contact area of this interconnect type—there is reason to believe that the 
primary contacting mode is not a metallurgical joint but rather a mechanical contact [62]. In the fourth 
diagram, an ECA—consisting of conductive particles in a polymer matrix—connects shingled cells 
directly without need of an additional ribbon or wire. The electrical connection is created through 
shrinkage of the polymer matrix during curing, which causes the conductive particles to mechanically 
contact each other and establishes a conductive path. 
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Figure 12. Material changes related to interconnect technologies that use a metallurgical connection vs. a mechanical contact to 
establish an electrical connection between tabbing ribbons or wires and the cell metallization. 

Such material changes are being driven by the other interconnect trends discussed above but also by 
factors including regulatory restrictions on lead content in solders and the desire to cut costs by reducing 
silver use [74]. Additional drivers include the need to reduce cell stresses introduced during the soldering 
process [75] and to accommodate new cell technologies, such as SHJ, that require low-temperature 
interconnects [76]. 
 
ITRPV projections show a decrease in solders that contain lead and an increase in lead-free solders over 
time (Figure 13). Historically, conventional solders were associated with lead-containing solder such as 
Sn-Pb alloys, and lead-free solders were associated with low-temperature solders such as In-Sn or Sn-Bi 
alloys. However, this simplified distinction no longer holds true as solder advances are incorporating new 
materials into new alloys for conventional and low-temperature applications [77,78]. Still, the ITRPV 
projections suggest a trend toward lead-free solutions with regard to solders and ECA. 
 
On the risk side, new solder alloys might have different mechanical, metallurgical, and chemical 
characteristics compared with established materials, and new accelerated tests and standards will be 
needed to address the change away from metallurgical connections towards interconnects based on 
mechanical contact [65,79]. For ECA, there are potential risks of new degradation mechanisms such as 
debonding or corrosion of non-silver conductive particles [45,80,81]. 
 

 
Figure 13. Historical (2016–2021) and projected (2022–2032) ITRPV data on shares of interconnect materials [17–22] 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
24

20
26

20
29

20
32

Gl
ob

al
 m

ar
ke

t s
ha

re

Lead-containing soldering Lead-free soldering Conductive adhesive

Electronic copy available at: https://ssrn.com/abstract=4273054



   
 

   
 

5. Bifacial 
This section discusses technology trends and reliability implications related to bifacial modules, including 
the implications of using thinner glass, transparent backsheets, and encapsulants based on polyolefin 
elastomer (POE). 
 
The market share of bifacial modules—typically with glass-glass configurations—has been increasing. 
Bifacial modules yield more power than monofacial modules because their cells are exposed to light on 
front and rear surfaces, which is effective for current p-type PERC cell technologies and is even more 
effective for emerging n-type technologies (see Section 6). Bifacial modules are used primarily in utility-
scale systems [22] and are suitable for use on flat rooftops; typical sloped residential rooftop installations 
do not provide significant bifacial gain [82]. The proliferation of bifacial technologies has also been 
driven by the decreasing cost difference between monofacial and bifacial modules [83–85]. In the United 
States, an import tariff exemption has further enhanced the competitiveness of bifacial modules [82].  
 
ITRPV [22] projections show the bifacial module market share increasing from 30% in 2022 to 60% in 
2032, with most of those modules in a glass-glass configuration (Figure 14). Modules with front glass and 
transparent polymer backsheets, which are not specified here, could also play a role, depending on 
whether their cost premium over glass-glass modules decreases. 
 
Bifacial module designs could experience new degradation and failure mechanisms that have not been 
present in traditional monofacial designs. For example, the greater weight of glass-glass modules is 
driving a trend toward thinner glass, but thinner glass presents potential reliability risks (see Section 5.1). 
In addition, compared with glass-backsheet modules, glass-glass modules trap more of the acetic acid 
formed from the breakdown of encapsulants based on ethylene-vinyl acetate (EVA), which increases the 
risk of component corrosion. Using POE-based encapsulants, which do not degrade to form acetic acid, 
can mitigate this problem (see Section 5.2). 
 
A bifacial structure may also change typical module and cell degradation modes, including potential-
induced degradation (PID) [86]. PID refers to several different mechanisms that result from the high 
potential difference between cells and the module frame during operation, and it can affect different cell 
architectures differently (including bifacial versus monofacial PERC cells). It ultimately results in power 
losses, but it can be mitigated at the system, module, or cell level, and it is sometimes reversible in the 
field. See, for example, Luo et al. [87] for a review. Shunting-type PID (PID-s) occurs owing to the 
diffusion of ions, specifically Na+, from the front glass into the cell, decreasing shunt resistance [87]. 
Additional PID mechanisms can occur on the rear side of bifacial cells and modules: degradation due to 
polarization of the cell surface (PID-p) [88–90] and corrosion of the silicon below the passivating layers 
PID (PIC-c) [90,91]. Current PID testing (IEC 62804-1 ed. 1) is optimized for the monofacial 
configuration with the goal of detecting PID-s. However, performing only IEC 62804-1 ed. 1 may cause 
effects unique to bifacial modules to go undetected; updated PID testing for bifacial cells and modules 
should be considered [92]. Some PID mechanisms may be mitigated by encapsulant choice; see Section 
5.2. 
 
Currently there are contradictory results with respect to any difference in module operating temperature 
for glass-glass and glass-backsheet configurations [93,94]. Higher operating temperatures are undesirable 
for two reasons. First, increased temperature (reversibly) reduces power output by reducing cell efficiency 
[95]. Second, increased temperature can accelerate irreversible degradation processes, risking module 
reliability [96]. Glass is a better thermal conductor compared to polymer backsheets and may dissipate 
heat more quickly, mitigating such concerns. Further studies are required to identify and validate whether 
glass-glass and glass-backsheet modules consistently run at similar temperatures.  
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Initially, glass-glass module designs were expected to reduce cell fracture risk by moving cells closer to 
the neutral axis of the PV laminate [96]. However, recent work suggests that glass-glass module designs 
may introduce higher residual stresses into the cells during the lamination process compared with 
traditional glass-backsheet designs [97,98]. As the encapsulant contracts, a typical polymer backsheet can 
contract with it, minimizing stresses. However, a rigid glass layer does not contract as easily with the 
encapsulant, resulting in higher cell deflections and stresses around the ribbon-shaped tap wires. This 
mechanism is especially prominent in laminates using EVA-based encapsulants, leading to higher cell 
stresses compared with laminates using POE-based encapsulants. Changing from EVA- to POE-based 
encapsulant reduces the effect of residual stresses in glass-glass type constructions, because the storage 
modulus and coefficient of thermal expansion (CTE) for POE are lower than for EVA [98]. 
 

 
Figure 14. Historical (2021) and projected (2022–2032) ITRPV data on bifacial and monofacial module, cell, and frontsheet-
backsheet market shares [22] 

5.1. Thinner glass and transparent backsheets 
Making glass thinner than the standard 3.2 mm is one solution to the challenges presented by heavy, large 
bifacial modules. Thinner glass reduces transportation and installation costs, and it enhances solar 
transmittance. ITRPV projections show front glass thicker than 3 mm losing market share primarily to 
glass between 2 and 3 mm thick (Figure 15). The diamond symbols in Figure 15 show the parallel trend 
for back glass thickness. Most back glass is already thinner than front glass, at 2 to 3 mm (see the area 
between the purple and gray diamonds), and it is projected to continue thinning over time.  
 
Potential risks of thinner glass include changes in the structural integrity and resistance to damage of 
modules from severe weather events and handling during installation. Thinner glass can also require a 
change in the heat treatment process. Tempered glass thinner than about 3 mm is not widely available 
owing to fabrication difficulties and high costs. Alternative treatments for thin glass—including heat 
strengthening and chemical toughening—affect the mechanical properties of the glass sheet [99]. Both 
heat-strengthened and tempered glass are treated through a high-temperature anneal followed by a 
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quench, resulting in compressive stresses at the outer surface of the glass. The modulus of elasticity after 
the heat treatment remains unchanged, but the material strength increases proportionally to the rate of the 
quenching step. Tempered glass is quenched at a faster rate, which makes it stronger than heat-
strengthened glass and less likely to fracture, given the same dimensions [100]. In addition, changing 
from tempered to heat-strengthened glass changes the fracture pattern. Heat-strengthened glass fractures 
in much larger pieces, whereas tempered glass fractures into small pieces. Chemical toughening also 
induces compressive stresses at the outer surface of thin glass layers and increases the material strength, 
but its application is limited by high processing costs [101]. 
 
More testing and characterization are needed to better understand the reliability of using thin, heat-
strengthened glass instead of thicker, tempered glass in modules [96]. Thinner, heat-strengthened glass 
with an inherently lower material strength will change the resistance of modules to hail impacts, although 
active mitigation options such as smart-stowing trackers could help prevent module damage from severe 
weather events [102]. Current hail testing procedures (ASTM E1038 and IEC 61215) might not be 
sufficient for the new locations in which PV is being deployed and might need to be updated with more 
representative hail information. Glass testing is further complicated by interactions with other module 
trends such as increasing module size (see Section 3). Updated testing and standards are needed to 
appropriately account for thinner glass designs and should be carefully considered separately from other 
module variables. 
 
Transparent polymer backsheets are another option for reducing the weight of bifacial modules [103]. 
Similar to traditional backsheets, transparent backsheets in bifacial modules offer corrosion resistance and 
easier manufacturing [96,103,104]. Smith et al. [104] demonstrated that transparent backsheets are 
appropriate for bifacial modules, but care must be taken when designing the backsheet layers, particularly 
in relation to their susceptibility to UV degradation. Transparent polymer backsheets require additional 
accelerated and field testing to understand their long-term reliability [104].  
 

 
Figure 15. Historical (2017–2021) and projected (2022–2032) ITRPV data on module front and back glass thickness [18–22] 
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5.2. Polyolefin-based encapsulants 
Encapsulants are polymer materials that include many additives, including adhesion promoters, UV 
stabilizers, and so forth. Because of variability in composition and processing, encapsulant properties and 
reliability can vary widely by manufacturer. In this article, we compare “EVA-based encapsulants” with 
“POE-based encapsulants,” but we acknowledge that the resulting generalizations may not hold true 
across all potential encapsulant formulations based on these materials. 
 
The trend toward bifacial modules is contributing to increased use of POE-based encapsulants and 
decreased use of EVA-based encapsulants. EVA is a semi-crystalline copolymer of ethylene and 28%–
33% vinyl acetate, with curing agents to induce crosslinking of the polymer chains during the lamination 
step [105]. EVA degrades in the presence of moisture to form acetic acid [106–108]. Acetic acid can 
typically escape a glass-polymer module through the permeable polymer backsheet [106]. However, in a 
glass-glass module, the acetic acid diffuses at a slower rate and may result in accelerated oxidation and 
corrosion of the interconnection and metallized layers [106,109–111]. POE is also a semi-crystalline 
copolymer, generally composed of a polyethylene backbone with different side groups; it eliminates the 
acetic acid problem because it does not have a vinyl acetate side group and thus does not form acetic acid 
during degradation [113]. Moreover, POE-based encapsulants typically have a greater volume resistivity 
and lower water vapor transmission rate than EVA-based encapsulants, and these characteristics result in 
less PID [107,112,114–119]. 
 
Factors hindering POE use include its higher cost and lower light transmission compared to EVA [120]. 
Still, ITRPV projections show use of EVA-based encapsulants decreasing over time, while the shares of 
encapsulants based on POE and extruded EVA with POE increase up to about a third of the market within 
a decade (Figure 16). 
 
Reliability risks associated with using POE in modules are largely associated with a lack of long-term 
durability testing. Such risks may be compounded by using POE with bills of materials optimized for 
EVA, which may affect the adhesion of the encapsulant to other components [107]. POE may also be 
associated with longer manufacturing times and narrower control windows for temperature, which might 
necessitate improved process and quality control. In addition, reliability risks might be introduced by 
manufacturing processes meant to reduce manufacturing costs. One such process is the use of mixed 
encapsulants (e.g., EVA in the front for lower cost and increased transmission and POE in the rear for 
reduced corrosion and PID), which might introduce new, unknown failure modes given the differences in 
material properties. Another process is the use of co-extruded encapsulants, where a thinner layer of POE 
is sandwiched between two layers of EVA to reach the desired thickness [120]. The co-extruded 
encapsulant reduces the lamination time and improves adhesion to glass [120]. However, understanding 
of the long-term reliability of this approach is limited by a lack of accelerated and field testing as well as a 
lack of known products using it. The recently published IEC TS 63209-2 is intended to provide a menu of 
tests to evaluate the long-term durability of polymeric materials and combinations of materials, and it 
would provide important data for evaluating new materials and module designs.  
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Figure 16. Historical (2021) and projected (2022–2032) ITRPV data on encapsulant material market shares [17–22] 

6. Cell technology 
Figure 17 shows past and predicted cell transitions in terms of market share, synthesized from ITRPV. All 
silicon wafers are intentionally doped with impurity atoms to tune electronic properties: those doped with 
boron or gallium (electronic acceptors in silicon) are called p-type, whereas wafers doped with 
phosphorus (an electronic donor in silicon) are called n-type and have opposite polarity. Monocrystalline 
p-type PERC is the dominant silicon technology in 2022, having rapidly replaced p-type Al-BSF. ITRPV 
projects a transition toward n-type cells over the next decade, with n-type technologies achieving a market 
share of 60% in 2032 (Figure 17). PV Tech projects a faster transition, with n-type technologies achieving 
a market share of 90% by 2030 [15].  
 
Figure 18 shows cross-section schematics of the cell architectures discussed here. A recent review by 
Ballif et al. [121] addresses the improvements associated with these architectures. PERC cells improved 
upon Al-BSF by improving rear surface passivation, resulting in open-circuit voltage (VOC) gain from 
~640 mV to ~680 mV in the best industrial devices of each type. Common PERC cell reliability issues 
include LID due to boron-oxygen defects, light- and elevated temperature-induced degradation (LETID), 
and PID (see Section 5). Boron-oxygen LID reduces performance when susceptible cells are exposed to 
light, but has been mitigated by a hydrogenation step [122,123] and the transition away from boron-doped 
wafers, which produce the boron-oxygen defect, to gallium-doped wafers [124,125]. From 2020 to 2022, 
gallium quickly supplanted boron as the dominant p-type dopant [20–22]. 
 
The transition to n-type is led by two cell architectures, shown in Figure 18: TOPCon and SHJ. This 
transition is driven largely by enhanced efficiency stemming from the typically higher charge carrier 
lifetime of n-type monocrystalline silicon, which is best exploited when combined with TOPCon or SHJ 
architectures [126]. Also, these architectures are likely best optimized when applied on wafers thinner 
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than the ~170 μm typical of PERC cells today, so they provide additional motivation to reduce wafer 
thickness [127,128].  
 
TOPCon cells have high efficiencies due to the physical separation of the rear metal layer from the bulk 
silicon by a tunnel oxide layer, which improves surface passivation and VOC up to approximately 720 mV. 
TOPCon cells have a higher bifaciality factor compared with PERC cells while using many of the same 
fundamental manufacturing processes, so industrial familiarity might promote TOPCon adoption. SHJ 
cells have high efficiencies due to superior surface passivation accomplished through intrinsic amorphous 
silicon layers, labeled “i-type a-Si” in the figure. This increases VOC as high as 750 mV, higher than 
TOPCon, while achieving very high bifaciality. On the other hand, SHJ has a substantially different 
manufacturing process compared with PERC or TOPCon, along with higher manufacturing equipment 
costs, which could hinder widespread introduction into the market. 
 
Further n-type efficiency gains are possible with interdigitated back contact (IBC) cell structures (called 
“back contact” in Figure 17), which combine the high efficiency potential of n-type TOPCon or SHJ 
surface passivation while eliminating the self-shading of the front contacts [129]. IBC concepts have 
historically produced very high efficiencies in laboratories and factory production but commercially have 
been limited primarily to premium market segments (e.g., rooftop PV systems) owing to their high cost 
[130]. Relatively high projected costs limit the market shares of this technology shown in Figure 17.  
 
While the anticipated transition from gallium-doped p-type to n-type cells is primarily motivated by 
performance, n-type cells also offer reliability benefits, e.g., through lower LETID risk. LETID degrades 
performance when susceptible wafers are exposed to light at temperatures above ~50°C, and it is caused 
at least in part by hydrogen in the silicon bulk. It can be mitigated via a number of factory approaches that 
essentially manipulate the quantity and chemical state of hydrogen in the cell [131]. LETID can occur in 
n-type wafers, but the risk seems to be reduced in n-type cell architectures, possibly due to reduced 
hydrogen introduced into the wafer bulk in n-type cell processing and/or other factors related to the 
precise processing history of the cells [131].  
 
PID mechanisms need further investigation for n-type cells. As described in Section 5, p-type PERC cells 
(particularly when bifacial) have been susceptible to several PID mechanisms; some of these have also 
been observed in some experiments on n-type cells. However, different n-type cell architectures exhibit 
different trends and susceptibility, and many open questions remain [132,133]. Cells with a transparent 
conducting oxide (TCO) layer, such as typical SHJ cells, might be at risk of an additional corrosion-type 
PID mechanism, depending on their specific structure and the module architecture around them [134]. 
The risks of PID in n-type cells may not be any greater than in p-type cells in practice, but more testing 
and study are necessary. An emphasis should be placed on understanding and mitigating PID risk in 
industrial implementations of the TOPCon and SHJ architectures, and standard PID tests specific to 
bifacial modules should be codified. 
 
Cells based on high-lifetime n-type wafers in general have several more conceivable reliability risks. 
First, the high bulk lifetime of the wafer and the complexity of the surface layers multiply their 
sensitivities [121]. The performance of both TOPCon and SHJ relies critically on ultrathin surface 
passivation layers (tunnel oxide for TOPCon, a-Si for SHJ). These layers could be susceptible to UV 
light-induced degradation, surface-related degradation, corrosion, or other as-yet unknown degradation 
modes, which would require testing and engineering to mitigate [135–140]. Reliability testing of these 
cells may require new specific stress combinations and sequences [12]. Finally, n-type cells typically 
require higher silver content in their contacts compared to p-type cells, which increases costs, raises 
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concerns about the global supply of silver, and motivates redesign of the metallization and 
interconnection scheme as discussed previously [141]. Copper is an attractive alternative material owing 
to being both cheaper and more earth-abundant than silver, and SHJ has an additional requirement for low 
process temperature metallization and interconnection, which gives further motivation to replace silver. 
Plated copper metallization has been demonstrated in both TOPCon and SHJ cell architectures [142,143]. 
Copper contacts could conceivably introduce new reliability issues and might require adoption of 
different interconnection schemes [144]; on the other hand, some promising lab-scale work has 
demonstrated equal or better performance by plated copper contacts in various reliability tests 
[143,145,146]. 
 

 
Figure 17. Historical (2016–2021) and projected (2022–2032) ITRPV data on cell technologies (ITRPV cell categories reclassified 
by authors to highlight key trends) [17–22] 

 

 
Figure 18. Cross-section schematics of PERC, TOPCon, and SHJ cell architectures 

7. Discussion and Recommendations 
Our selected module technology trends have numerous, interrelated drivers and reliability implications. 
To give a few examples, more busbars and interconnections are needed to maintain performance in larger 
cells, and they improve reliability in larger, thinner cells because the cells are more likely to remain 
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electrically connected if they crack. This interconnection trend has helped drive interconnection 
geometry, process, and material changes—including use of round wires in multiwire configurations and 
shingled cells connected by ECA—each of which has its own reliability benefits and risks. The trend 
toward multiwire and shingling with ECA is also driven by the need for low-temperature interconnect 
approaches, related to the proliferation of n-type cells. The rise of n-type cells, with their high bifaciality 
factors, has a synergistic relationship with the rise of bifacial modules. The popularity of bifacial modules 
is driving use of POE-based encapsulant (to mitigate corrosion risk) and thinner glass (to reduce weight 
but with potential implications for reliability, especially in increasingly large modules). And so forth. 
 
As our review shows, many reliability issues and mitigation strategies related to these trends have been at 
least partially characterized. For example, PID-s is a widely studied degradation mechanism for 
monofacial cells and modules, and increased rear-side PID-c and PID-p susceptibility in bifacial glass-
glass technologies has been studied. However, recent work has highlighted the need for tailoring 
qualification tests to bifacial products, accounting for differences between bifacial PID and monofacial 
PID. Similar reasoning can be applied to all module material and technology changes. At a minimum, all 
changes should be assessed through established test procedures. The IEC retest guidelines (IEC TS 
62915, implemented in 2018) require qualification retesting when significant module material or process 
changes are made. Such retesting subjects the new configurations to stresses known to induce failures in 
past products. Still, new failure mechanisms could arise owing to module changes or interactions within 
the bill of materials, and these new mechanisms may require new qualification standards and test 
procedures. 
 
In general, our review highlights the ongoing need to assess the reliability implications of new module 
trends. For all new module technologies, it remains critical to collect and analyze long-term field data, 
although keeping up with rapid technological turnover is challenging, as discussed in Section 1. Keeping 
standards and testing protocols aligned with emerging module designs and materials is similarly 
important yet difficult.  
 
We also identify research needs related to specific technology trends. For module architecture trends, 
research is needed to characterize the reliability implications of larger and thinner cells in conjunction 
with variations in module design, including interconnect type and thinner glass. Research and modified 
tests are required for assessing the effect of larger modules on cell cracking due to weather, shipping, 
handling, and installation. More broadly, a better understanding is needed of the multi-step relationships 
between observable defects/cracks and long-term module degradation causing potential power loss. 
 
For interconnection trends, research on potential new degradation mechanisms associated with ECA, such 
as debonding and corrosion of non-silver conductive particles, would be valuable. In addition, existing 
tests and standards developed for traditional metallurgical interconnections might not be suitable for 
emerging technologies such as structured foil approaches. The latter may be better characterized as using 
mechanical contact rather than metallurgical connection as the primary contacting mode. Thus, the 
associated reliability tests should be updated to account for this change. 
 
For bifacial trends, the need for PID tests tailored to bifacial modules is mentioned above. In addition, 
accelerated and field testing are needed to assess the long-term reliability of mixed and co-extruded 
encapsulants, and similar work is needed to assess the reliability of transparent polymer backsheets. Hail 
testing may require modifications to account for more hail-prone PV system locations. Smart-stowing 
trackers could help prevent damage to bifacial modules using thinner glass. 
 
Finally, for cell technology trends, there is a need to develop specific stress combinations and sequences 
for testing the reliability of n-type cells and their ultrathin surface passivation layers. In particular, testing 
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and standards development is necessary to assess and screen for UV light-induced degradation and PID 
risk in industrial implementations of bifacial TOPCon and SHJ architectures. 
 
We identified these research areas through our review and analysis at one point in time. We anticipate 
they will be useful to stakeholders in the near term. However, the evolution of PV module technology will 
be continuous, so the assessment of module reliability must be continuous as well. One way of 
conceptualizing a continuous improvement process is the PV reliability learning cycle shown in Figure 
19. The cycle employs several steps to maintain module quality in lockstep with technological change. In 
the first step of each trip through the cycle, introducing new products and designs produces anticipated 
and unanticipated effects within integrated modules. The remaining steps in the cycle represent the 
holistic reliability assessment needed to address the implications of these changes [6]. Field diagnostics 
are used to detect unexpected changes in module performance, followed by degradation and failure 
analysis to detect the root causes of the changes. The results of these analyses inform accelerated tests and 
standards development to account for new degradation mechanisms and detect any possible new failure 
modes in next-generation products. Currently, the industry relies on accelerated testing and standards to 
screen out previously observed failure modes and weaknesses. In the future, these tests and standards 
must add methods to detect and screen out unanticipated weaknesses and failure modes as well. Lifetime 
estimation and predictive modeling have the potential to enable the simultaneous assessment of multiple 
degradation mechanisms and their interactions through a unifying modeling framework [13]. Thus, 
lifetime estimation and predictive modeling complement field diagnostics, failure analysis, and 
accelerated testing to enable detection and mitigation of the unanticipated effects of new technologies 
before design changes are introduced into manufactured products. The PV reliability learning cycle 
begins again when findings from a previous cycle are incorporated into module performance and 
reliability improvements through new technological changes. 
 

 
Figure 19. The PV reliability learning cycle, enabling continuous improvement to ensure quality despite ongoing technological 
changes. 

8. Conclusion 
Maintaining the reliability of PV modules in the face of rapidly changing technology is critical to 
maximizing solar energy’s contribution to global decarbonization. Our review helps identify potential 
future reliability risks before they become widespread in the market by linking emerging technology 
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trends with their reliability implications. We leverage information and viewpoints from PV market 
reports, interviews with PV researchers and other industry stakeholders, and peer-reviewed literature to 
narrow the multitude of possible changes into a manageable set of 11 impactful trends likely to be 
incorporated in near-term crystalline-silicon module designs. We group the trends into four categories 
(module architecture, interconnect technologies, bifacial modules, and cell technology) and explore the 
drivers behind the changes, their interactions, and associated reliability risks.  
 
Anticipating emerging technological changes in this way can help accelerate the PV reliability learning 
cycle. Our analysis identifies specific areas that would benefit from faster progress through the cycle, 
including needs for data collection, standards and test development, and research related to emerging 
module products and designs. Researchers should continue tracking module technologies and their 
reliability implications so efforts can be focused on the most impactful trends. As the rapid technological 
evolution continues, it is also critical to incorporate fundamental knowledge into models that can predict 
module reliability. Predictive capabilities complete the PV reliability learning cycle—reducing the time 
required to assess new designs and mitigating the risks associated with large-scale deployment of new 
products. Thus, getting ahead of the curve on module reliability will help ensure that PV continues to play 
a central role in the global energy transition. 
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